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A new formulation of the problem of the mechanics of a strained solid in terms of a stress tensor,
proposed in [1] and later developed in [2-5, etc.}, is extended to anisotropic media, physically linear and
non-linear, when using tensor bases connected with a certain anisotropy group [6] of mechanical
properties. The case of transverse isotropy is considered in detail.

1. We will assume everywhere a rectangular Cartesian system of coordinates in R, For brevity
will often write “tensor” instead of the “components of the tensor”. To satisfy the conditions of
compatibility for small strains ¢, [7]

n'l Ee'-uel'm 8‘,,,,,,, =0 (1.1)

it is necessary and sufficient for the following conditions to be satisfied

Ny = Aey;+0,; -3y —€py =0 0=g; 1.2

It follows from (1.2) that
n°=n;8; = 2(A0-¢,, ) =0 13)
nl],] = (AG-S,M',M)',- =0

Suppose a tensor basis is constructed for the group G, which characterizes a certain
anisotropy of the mechanical properties. Each tensor that occurs in this basis is invariant under
the group G [6]. We will use this basis to construct second-rank tensors ai” (a=1,..., N;
N <3), which in sum comprise the unit tensor 8, and are pairwise orthogonal, i.e.

(@) (B)
N a: ‘a;
5 a,‘,-“’=5.-j» JL_L=5¢, a(a)g1,al_(ja)a'§ja) 1.4)
a=1 Ya)dp)

Note also that the following relations hold
a§f’a§?’ = a,gj“)&aﬂ (1.5)

We will now consider the incompatibility tensor n; (1.2). Its linear invariants are formed
using the tensor basis of the group G

o)
1'l(n) = najiai(j (1-6)
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It follows from the first relations of (1.3), (1.4) and (1.6) that

N (@) N
n°=nd; =n; X i’ = LN 1.7
a=1 a=1

Suppose £ (a=1,..., N) are certain, for the present, arbitrary numbers. Then the tensor
/H;, constructed as follows:

- ¥ ey, (@
H; =n; +a§=;l§ N (1.8)

vanishes together with the tensor n,.
In fact, it follows from (1.2), according to (1.6), that

Na) =0 1.9
It therefore follows from (1.8) that
H;=0 (1.10)

If (1.10) is satisfied, convoluting the tensor H, with the tensor of the basis ¢ B=1,..., N)
we obtain from (1.8) and the second relation of (1.4)

Hyal =ng, + EPn g (a(a))? (1.11)

Hence it follows that conditions (1.9) will be satisfied if

£ % (aqy)2, a=1, ..., N (1.12)

Hence, condition (1.2) also follows from (1.8) and (1.10).

Thus, the compatibility conditions (1.9) and (1.10), the compatibility conditions (1.2) and the
compatibility conditions (1.1) are equivalent to one another when inequalities (1.12) are
satisfied.

2, Suppose R, is a positive-definite operator. It then follows from the condition

A; 2 R;(Cy +PF;)=0 2.1)
that
c;,;+pPF =0 2.2)
We will form linear invariants of the tensor A4;= A, + A;;
Aoy =45, a=1,.., N (23)

ij

By analogy with (1.7) we have
N
A°§ Aya‘j = a2=lA(a) (2.4)
Obviously, to satisfy the conditions
Aij = 0 (2.5)

it is necessary and sufficient to satisfy the conditions
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— N
A=A+ 3 EVAGaP =0 (26)
a=l

if inequalities (1.12) are satisfied.
Indeed, relation (2.6) follows from (2.3) and (2.4). Suppose now that we specify (2.6). We

will convolute it with each tensor basis a (B=1, ..., N). We then obtain from definitions
(23) and (1.4)

_ 2

Aya) = 4g +EP A (ag)" =0 @27

When condition (1.12) is satisfied it follows from (2.7) that

Ag =0, o0=1, ..., N (2.8)

Hence (2.5) follows from (2.6).

Suppose now that the defining relations of the mechanics of a strained solid (physically
linear or non-linear) enable us to express the strain tensor €, in terms of the stresses o,. After
making this replacement we will conventionally denote the tensor H;; (1.8) in terms of H (o).

We will form the tensor

Hy(o)=H;(0) + A; 29
It follows from (2.1) and (2.2) that the tensor H, satisfies the equations
(2.10)

The new formulation of the problem of the mechanics of a strained solid for anisotropic
media consists in finding a sufficiently smooth field of the stresses o, which satisfy Egs
(2.10) in a simply-connected region of three-dimensional Euclidean space, when the follow-
ing boundary conditions are satisfied on the boundary of this region—a certain smooth
surface £

onlz =8 (05 +PF)z=0 (211)

gl

where n; are the components of the unit vector of the outward normal to the surface F, are the
mass forces, and S are the surface forces.

We will prove that the solution of problem (2.10) and (2.11) satisfies the equations of
equilibrium (2.2) over the whole region as well as the conditions of compatibility (1.1).

To do this we will convolute expression (2.8) with each tensor of the basis 4, p=1, ..., N.
We then obtain from (1.11) and (2.7)

Hy(0)al = (ng, + Ap)1+EP(ap))*) =0
i B

whence, when condition (1.9) are satisfied, it follows that

M) +Ap) =0
We will now differentiate (2.9) with respect to the jth coordinate
H; ;(0)= Hy ;(0)+ Ay (2.12)

Consider each of the terms on the right-hand side of (2.12). It follows from (1.3) and (1.8)
that
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=t e S E@) (@)
Hyj=rmi+ X 5%a ),
and, taking (1.7) into account, we obtain
N
Hy;= 3 048y +E0a M), (2.13)
For the second term in (2.12) we have from (2.6), taking (2.4) into account
yy X @ (@)
Ay =04+ 35!(}65.; + E%") A, ; 214

Now substituting (2.14) and (2.13) into (2.12) we obtain

Hy(0)=A4+ a%l(% 8+ EVa) (M + Ay),; =0 (2.15)

However, according to (2.12) the sum on the right-hand side of (2.15) vanishes, and hence
AA; =0, ie. A is a harmonic vector. On the boundary of the simply connected region con-
sidered this vector vanishes by (2.1) and (2.11). Consequently, it is also equal to zero inside this
region. Hence, the equations of equilibrium (2.2) are satisfied everywhere in the region.
Equation (1.10) then follows from (2.10) by (2.9), and from it we obtain (1.1) and (1.2).

3. The result obtained in Section 2, holds for any physically non-linear medium possessing
anisotropy of the mechanical properties.
As an example consider a transversely isotropic medium. For such a medium the tensor
basis consists of two tensors [6]
o may; =8, ~13;, agy =2
2 =
a!gj ) 'Iitf’ a(z) =1

where the unit vector [, represents the direction of the axis of transverse isotropy.
The strain tensor €, can be represented in the form of the sum of four pairwise-orthogonal
tensors

€y = %0a; +e°ll, + p; +2g; 3.1

where the linear invariants of the strain tensor 6 and &° are formed by convoluting the strain
tensor with the tensors of the basis

Omaue;, eomlle;
while the deviators p, and g, have the form
g = Cahl; +euhl) -l 3.2)
pij =¥ (eaay +Epay) - %éag gy
Equations (2.2) follow from the identify

Eu 3)4 (S,kab» +£j,ah)+%[,(e,~,‘lj +81k1,')
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Note also the useful identities
pyl; =0, qyl; =haya; = Yheyay 33)
In the linear theory of elasticity the strains are related to the stresses by Hooke’s law [7]
& = JuOu (3.4)

where J,,, is the elastic compliance tensor, which for a transversely anisotropic medium has
five independent constants

Tius = Magay +Wo(aghh +ayhily) + Walil il + Wy(agay +azap )+ (35)

+us (a,-,‘ljl, + a,,l]lk + a#lill + aﬂl,'lk )

Just like the strain tensor (3.1) we can represent the stress tensor in the form of the sum of
four pairwise-orthogonal tensors

0; =0ay +0°ll; + P; +20Q; (3.6)
o= %ach. o°= l,ljcu
Q; = K (Ould; +ouhl)- o°l;

P, = ¥,(0ay; + Opay) - Ga; - Q;

Now substituting expansions (3.1), (3.5) and (3.6) into (3.4) and carrying out the necessary
convolutions, taking (1.5) and (3.3) into account, we obtain

% Oa,] +£° l,lj + Pu + 2qu = (l'l'l +H, )a,,& + uzlllla + (3.7)

+ (R2a +Wakil;)O° 4214 B + A5 (Qimbnl; + Qjmimby)

Convoluting the left- and right-hand sides of (3.7) first with a; and then with [/, we obtain,
respectively,

0= () +Hg)E+1q0°, €°=|1,6+11,0° (338)

Now subtracting the first equation of (3.8), multiplied by 1/24,, and the second equation of
(3.8), multiplied by LJ, from (3.7), we obtain

Py +2q; =210, B + 45 (Qimlmlj + Qjmlnk) 3.9)
Convoluting the left- and right-hand sides of (3.9) with a,a, and using (3.3), we obtain
Pu =2K4Py (3.10)
Bearing in mind the identity
Oimimlj + Qimlndi = O
we obtain form (3.9)

2y =250y (3.11)
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Thus, for a transversely isotropic medium Eq. (3.4) is equivalent to the two relations (3.8),
connecting the linear invariants of the strain and stress tensors, and to the two relations (3.10)
and (3.11), which indicate the proportionality between the two deviators of the strain and stress
tensors.

We will write Eqs (2.10) for a transversely isotropic medium. To do this we will represent
the Laplace operator in the form

Aésqa,al. =(a_.l. +l,ll.)a=al. =A+Ao

A=ay.d;, A°=(40d,)?

We have from (1.2)
n; = (A+A°X Y% éa,-j +&°Ll; +p; +2q;)+ é,ij +E€%; - %é.kjaik - (312)
~ €5kl — Py ~ 24k — Y50 k0 ~€ulily — Pix i — 281 i
Then, by (1.6) we have

Nay =Na; = A°+A°0 - 2Gmpmn + A8~ 2Pmn.mn (3.13)

N2y =Nyl = Be°+A°0-24,,,
For simplicity we will use the operator R, (2.1) in the form
Rj = a;Ry) + 1R,
Then, by (2.3), we have
Auy = Aya; =2Rya; (O +PF ;) (3.14)
A(Z) = Aljtll] = 2R(2)l,tj (Gik,kj + pE’J)
In (3.12) and (3.13) we express the strains in terms of the stresses using (3.8), (3.10) and
substitute the results into (1.8) and (2.9).
Then, assuming
by =Y + W) a; +Molil;, ¢ = Ypaa; + 13l
we obtain Eqgs (2.10) in the form
A(byG +c;0°+21, Fy +4ps0; ) + (Mg + 1o +114)0 ;5 + (Mg +H3)0; — (3.15)
— (byG 45 + b O i) — (cieO° 1 +CjaO° ki )~ 2Wa (P i + P ki) — s Qi iy + Qi) +
+ a8V [AG + Uy ACO+H(lhy +1g) AG+UrACT APy iy — O a1+
+ (Ryyay + Roylil X O i + PFy ;) + (Ryyaj + Riapl il Oy i + PF i) +

+ aijg(l)A(l) + 15’;5(2)‘4(2) =0

(the quantities (A,, and A, are defined in (3.14)).
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Equations (3.15) contain four arbitrary constants, two of which, £&” and £®, are dimension-
less, for which, by (1.12)

EV %3, EP -1
where R,, and R, are non-zero and have the dimensions of elastic compliance.
4, For a physically non-linear medium Eqgs (2.10) will be non-linear due to the non-linearity
of the defining relations, i.e. the non-linearity of the first term in (2.9).
We will consider one of the possible forms of such defining relations using the example of a
transversely isotropic medium.

We will first assume that the defining relations are potential, i.e. a scalar function W of the
invariants of the stress tensor exists such that

oW  dW
€ _—2-[30',] + aO'ﬁ] (41)

Every symmetrical second-rank tensor for a transversely isotropic medium has five
independent invariants [6]. Two of these are linear (6 and ¢°), and two are “quadratic”, which
can be related to the intensities of the deviators

PE,,P,-]-PU, 0=,20,0; (42)

We will choose as the fifth invariant the determinant of the sum of the deviators P, and Q,,
which we will denote by R

R= Piijkai 43)
Thus, we know a scalar function of the invariants
W=W(G, ¢°,P,Q,R) (4.4)

The derivatives of the invariants with respect to the stress tensor have the form

~ o P. ..
% 1, 9%y k0% 45)
c; 2 ° doy do; P do; Q
1
R LBy + P+ Quy -5 Oy + 2 0y)
o; 2 4
Using (4.5) we obtain from (4.1)
e _1gvga+a I oW B aWQ,, W IR
1=236 % 30" 9P P T aQ, 0 @ R 30, (4.6)

We act with the defining relations (4.6) in the same way as in Section 3 in the linear case. We
convolute relations (4.6) successively with g; and then with /. We have

6=0W /35, £°=aW/dc® 4.7

We then obtain from (4.6), (4.7) and (3.2)



88 B. Ye. Pobedrya

WE WG W IR

pi +2G; =———+ 438
VT 9P P 9@ Q@ OR Jdo; 8
Convoluting (4.8) with the tensor a,a, and using (4.5) we obtain
p..:gy_i.,.ﬂ 0.0, _.1_Q2(11 +l ) 49
iTP P aR| MM T4E TRl “9)
Comparing (4.8) and (4.9) we obtain
oW Q; 1dW
q; = 56"5*33;(3&5 +Py0y) (4.10)

Thus, the potential defining relations for a transversely isotropic medium (4.1) and (4.4) are
equivalent to the defining relations (4.7), (4.9) and (4.10).

If the defining relations are quasilinear [6], W in (4.4) will be independent of the fifth
invariant of (4.3). In this case relations (4.9) and (4.10) have the following respective form

_OWE; _WQ
Pi=3p P =30 0 @.1)

It follows from (4.11) that

_oW oW
P=3p 130

Hence, Egs (4.11) can be written in the form

p
Py = FP'.I., g = —g—Qq (412)

If the defining relations are not potential, they can be written for the strain tensor (3.1) in a
form which generalizes (4.9) and (4.10)

Py = fiBj ! P+ £(0aQy ~1/4Q°(4; +1/2a;)] (4.13)

g; = 139, / @+ [y (P Qy; + Py Q)

where the functions f,, f;, f; and f,, like the linear invariations of the strain tensor (é and €°),
depend on five invariants of the stress tensor 6, ¢°, P, Q,R (3.4), (4.2) and (4.3).

If the defining relations are quasilinear, we must put f,= f,=0 in (4.13), and they can be
written in the form (4.12).

Note that the second term in (2.9) may also turn out to be non-linear due to the choice of the
non-linear operator R, in (2.1). In this case the mass forces will occur non-linearly in (2.10),
unlike Egs (3.15).

If the defining relations depend on the temperature T, and the Duhamel-Neumann hypo-
thesis holds, the temperature will occur linearly in (3.9) even in the case of physical non-
linearity. The tensor m; (1.2) will be supplemented by the term n;, which for the transversely
isotropic case is expressed as follows:

N7 = (oyay + 0ol AT +(0y +20,) Ty -0y (apTy + a3 T3i)~ 0l 5Ty +;Ty)
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Ny = 204A° T+ (20 +@3)AT

Dy = 204A°T + 0, AT
Here the tensor of the thermal expansion o, can be represented in the form
(l,} = a‘a,j +a21‘l}

In conclusion we note that for a transversely isotropic medium the differentiation operator
d, can also be represented in the form

3; =a,- +l,-3°; 30 =l,'a,'; 5,’ =a,,3,
Hence we have

A=8,9,9; =(a; +11;)99; =90, + (@) =A+A°
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