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A new formulation of the problem of the mechanics of a strained solid in terms of a stress tensor, 

proposed in [l] and later developed in [2-5, etc.], is extended to anisotropic media, physically linear and 

non-linear, when using tensor bases connected with a certain anisotropy group [6] of mechanical 

properties. The case of transverse isotropy is considered in detail. 

l. We will assume everywhere a rectangular Cartesian system of coordinates in R'. For brevity 
will often write “tensor” instead of the “components of the tensor”. To satisfy the conditions of 
compatibility for small strains el [7] 

‘lij aqiU o jmn Eh,lm = O 

it is necessary and sufficient for the following conditions to be satisfied 

(1.1) 

Q it At!,9 +8,, -E&,& -Ejk,h =O, es &ii 0.2) 

It follows from (1.2) that 

q” % r@ii e 2(A8 - a,,,) = 0 
(1.3) 

qii.1 E (Ae-a,,,),i =O 

Suppose a tensor basis is constructed for the group G, which characterizes a certain 
anisotropy of the mechanical properties. Each tensor that occurs in this basis is invariant under 
the group G [6]. We will use this basis to construct second-rank tensors 4) (a= 1, . . , , N, 
N s 3), which in sum comprise the unit tensor 6, and are pairwise orthogonal, i.e. 

(1.4) 

Note also that the following relations hold 

&)a#) = a$@g@ (I.9 

We will now consider the incompatibility tensor qj (1.2). Its linear invariants are formed 
using the tensor basis of the group G 

0x1 
tl(a) B Iluau (1.6) 
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It follows from the first relations of (1.3), (1.4) and (1.6) that 

Jl”- ‘l&j - Qja5,aij N ((I) = :?(a) (1.7) 

Suppose e@) (a = 1, . . . , N) are certain, for the present, arbitrary numbers. Then the tensor 
f H,, constructed as follows: 

(1.8) 

vanishes together with the tensor rlij. 
In fact, it follows from (1.2), according to (1.6), that 

It therefore follows from (1.8) that 

V(a) = O (1.9) 

Hii= (1.10) 

If (1.10) is satisfied, convoluting the tensor He with the tensor of the basis $) (I3 = 1, . . . , N) 
we obtain from (1.8) and the second relation of (1.4) 

,~;a’ = ‘tea, + ~@+I&(,, )* (1.11) 

Hence it follows that conditions (1.9) will be satisfied if 

g(a) # -(a(,,)“, Q = 1, . . . . N (1.12) 

Hence, condition (1.2) also follows from (1.8) and (1.10). 
Thus, the compatibility conditions (1.9) and (l.lO), the compatibility conditions (1.2) and the 

compatibility conditions (1.1) are equivalent to one another when inequalities (1.12) are 
satisfied. 

2 Suppose R, is a positive-definite operator. It then follows from the condition 

Ai e Rv(bjka +Pq)=O (2.1) 

that 

~ii, j ~ Pi = 0 

We wiII form linear invariants of the tensor 4 = Ai,j + Ajj 

~a,~Atia$‘? a=l, . . . . N 

By analogy with (1.7) we have 

(2.2) 

(2.3) 

Obviously, to satisfy the conditions 

AC=0 

(2.4) 

(2.5) 

it is necessary and sufficient to satisfy the conditions 
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if inequalities (1.12) are satisfied. 
Indeed, relation (2.6) follows from (2.3) and (2.4). Suppose now that we specify (2.6). We 

will convolute it with each tensor basis aiP) (p = 1, , . . , N). We then obtain from definitions 
(2.3) and (1.4) 

When condition (1.12) is satisfied it follows from (2.7) that 

ha) ~0, a==, . . . . N (2.8) 

Hence (2.5) follows from (2.6). 
Suppose now that the defining relations of the mechanics of a strained solid (physically 

linear or non-linear) enable us to express the strain tensor &ij in terms of the stresses by. After 
making this replacement we will conventionally denote the tensor Hii (1.8) in terms of H,(o). 

We will form the tensor 

It follows from (2.1) and (2.2) that the tensor Hli satisfies the equations 

(2.10) 

The new formulation of the problem of the mechanics of a strained solid for anisotropic 
media consists in finding a sufficiently smooth field of the stresses oV which satisfy Eqs 
(2.10) in a simply-connected region of three-dimensional Euclidean space, when the follow- 
ing boundary conditions are satisfied on the boundary of this region-a certain smooth 
surface I; 

Oiinj(C =$ (b#,j +pl$yx =O (2.11) 

where nj are the components of the unit vector of the outward normal to the surface 4 are the 
mass forces, and SF are the surface forces. 

We will prove that the solution of problem (2.10) and (2.11) satisfies the equations of 
equilibrium (2.2) over the whole region as well as the conditions of compatibi~ty (1.1). 

To do this we will convolute expression (2.8) with each tensor of the basis @, B= 1, . . . , iV 
We then obtain from (1.11) and (2.7) 

whence, when condition (1.9) are satisfied, it follows that 

We will now ~fferentiate (2.9) with respect to the jth c~rd~ate 

R~,j(C)=H#.jCq)+&,j (2.12) 

Consider each of the terms on the right-hand side of (2.12). It follows from (1.3) and (1.8) 
that 
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and, taking (1.7) into account, we obtain 

For the second term in (2.12) we have from (2.6), taking (2.4) into account 

(2,13) 

(2.14) 

Now substituting (2.14) and (2.13) into (2.12) we obtain 

I?,,j((J)=Af$+ 30&+ S(a)a,:“‘)ol(a,+4a)).j =o 
a4 

(2.15) 

However, according to (2.12) the sum on the right-hand side of (2.15) vanishes, and hence 
u = 0, i.e. 4 is a harmonic vector. On the boundary of the simply connected region con- 
sidered this vector vanishes by (2.1) and (2.11). Qnsequently, it is also equal to zero inside this 
region. Hence, the equations of equilibria (2.2) are satisfied everywhere in the region. 
E?quation (1.10) then follows from (2.10) by (2.9), and from it we obtain (1.1) and (1.2). 

3. The result obtained in Section 2, holds for any physically non-linear medium possessing 
anisotropy of the mechanical properties. 

As an example consider a transversely isotropic medium. For such a medium the tensor 
basis consists of two tensors [6] 

aY (‘1 H U@ = 6, -l&j* 41) = 4% 

U”) I lilj, ati) = 1 ?I 

where the unit vector 4 represents the direction of the axis of transverse isotropy. 
The strain tensor E# can be represented in the form of the sum of four pai~ise-or~ogon~ 

tensors 

El =~Ba#+E”lflj+pii’2q~ (3.1) 

where the linear invariants of the strain tensor 6 and E’ are formed by convoluting the strain 
tensor with the tensors of the basis 

6 i U@&jj * &” p 1ilfEjj 

while the deviators pu and qe have the form 

(3.2) 
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Note also the useful identities 

p&j = 0, q&j = &@ji = M&aji (3.3) 

In the linear theory of elasticity the strains are related to the stresses by Hooke’s law [7] 

&g = J&&j (3.4) 

where JijM is the elastic compliance tensor, which for a transversely anisotropic medium has 
five independent constants 

(3.5) 

Just like the strain tensor (3.1) we can represent the stress tensor in the form of the sum of 
four pairwise-orthogonal tensors 

oij = &+j + O”lilj + Pu + 2Qi] (3.6) 

e, = M(oi~lrtlj + Qj~l~li) - do lilj 

Now substituting expansions (3.1), (3.5) and (3.6) into (3.4) and carrying out the necessary 
convolutions, taking (1.5) and (3.3) into account, we obtain 

n&j +&Olilj +Pg +2q# = (PI + CL4 )a,6 + p*lilj6 + (3.7) 

+ (FZU~ + P#j No +2P& + 4Cr, CQJJj + QjJ& 1 

Convoluting the left- and right-hand sides of (3.7) first with aii and then with lilj we obtain, 
respectively, 

8=(p, +p4,)6++*cJ0, E0=p*6++$J0 (3.8) 

Now subtracting the first equation of (3.8), multiplied by 1/2u,, and the second equation of 
(3.8), multiplied by lil,, from (3.7), we obtain 

pii + 2qii = 2p4s + 4~5 tQ&Jj + Q&Ji 1 (3.9) 

Convoluting the left- and right-hand sides of (3.9) with qflj, and using (3.3), we obtain 

Pu = 2Pd!u (3.10) 

Bearing in mind the identity 

we obtain form (3.9) 

Q&j + Q&i = Qu 

c?@ = %2ii, (3.11) 
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Thus, for a transversely isotropic medium Eq. (3.4) is equivalent to the two relations (3.8), 
connecting the linear invariants of the strain and stress tensors, and to the two relations (3.10) 
and (3.11), which indicate the proportionality between the two deviators of the strain and stress 
tensors. 

We will write Eqs (2.10) for a transversely isotropic medium. To do this we will represent 
the Laplace operator in the form 

A s 6,aiaj = (aii + Lilj>a$j = i + A” 

We have from (1.2) 

2 3 avaiaj, A’S ($3, )’ 

- Efelilk - Pit,& - 2qik.5. - %b.kjajk - EPk,iLjLk - Pjk,ki - 2qjk,ki 

Then, by (1.6) we have 

r+,, E qgaii = &‘+A06 - 2q,,,,,,,,, + % - 2p,,.,,,,, (3.13) 

(3.12) 

~(2) a Iliililj = ~‘+6”~-2q,,,, 

For simplicity we will use the operator Rij (2.1) in the form 

Then, by (2.3), we have 

42) s +1&j = 2+2)lilj(cik,& + PF;,j) 

In (3.12) and (3.13) we express the strains in terms of the stresses using (3.8), (3.10) and 
substitute the results into (1.8) and (2.9). 

Then, assuming 

we obtain Eqs (2.10) in the form 

+ a&"'f+l, + liljc(2)+, = 0 

(the quantities (A,,, and 4,) are defined in (3.14)). 
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Equations (3.15) contain four arbitrary constants, two of which, k(‘) and CC*), are dimension- 
less, for which, by (1.12) 

I$‘) # - j$ , p # -1 

where 4,) and I$) are non-zero and have the dimensions of elastic compliance. 

4. For a physically non-linear medium Eqs (2.10) will be non-linear due to the non-linearity 
of the defining relations, i.e. the non-linearity of the first term in (2.9). 

We will consider one of the possible forms of such defining relations using the example of a 
transverselj;;isotropic medium. 

We will first assume that the defining relations are potential, i.e. a scalar function W of the 
invariants of the stress tensor exists such that 

&ii 
= 1 aw ; aw 

2 a+ q ( 1 
(4.1) 

Every symmetrical second-rank tensor for a lransversely isotropic medium has five 
independent invariants [6]. Two of these are linear (0 and a’), and two are “quadratic”, which 
can be related to the intensities of the deviators 

(4.2) 

We will choose as the fifth invariant the determinant of the sum of the deviators Pv and 12,, 
which we will denote by R 

R = gQj,Qki (4.3) 

Thus, we know a scalar function of the invariants 

w = ~(5, cP,P,QvR) (4.4) 

The derivatives of the invariants with respect to the stress tensor have the form 

(4.5) 

Using (4.5) we obtain from (4.1) 

. 2!!u..+ aw ‘ti 
aw pti aw Q. aw aR 

2 36 V aoofifj +---+---+-- 
ap P aa, Q aR a0,, (4.6) 

We act with the defining relations (4.6) in the same way as in Section 3 in the linear case. We 
convolute relations (4.6) successively with 4 and then with lilj. We have 

&aw/aa, EO=awcbo (4.7) 

We then obtain from (4.6), (4.7) and (3.2) 
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awg aw&+aw aR 
pii +2@ =--+- 

ap P aQ Q aR aqj 

Convoluting (4.8) with the tensor ai,+, and using (4.5) we obtain 

Plj -$Q2(liI, +$a)] 

Comparing (4.8) and (4.9) we obtain 

(4.8) 

(4.9) 

(4.10) 

Thus, the potential defining relations for a transversely isotropic medium (4.1) and (4.4) are 
equivalent to the defining relations (4.7), (4.9) and (4.10). 

If the defining relations are quasilinear [6], W in (4.4) will be independent of the fifth 
invariant of (4.3). In this case relations (4.9) and (4.10) have the following respective form 

Pij 

It follows from (4.11) that 

aw aw 
P=ap' 4== 

Hence, Eqs (4.11) can be written in the form 

(4.11) 

(4.12) 

If the defining relations are not potential, they can be written for the strain tensor (3.1) in a 
form which generalizes (4.9) and (4.10) 

Pu =A?j /P+f2[QikQk, - 1 / 4Q2(1,~j + 1 / 2aii )I (4.13) 

where the functions fi, fi, f3 and f4, like the linear invariations of the strain tensor (6 and E“), 
depend on five invariants of the stress tensor 6, CT’, P, a, R (3.4), (4.2) and (4.3). 

If the defming relations are quasilinear, we must put fi = f4 = 0 in (4.13), and they can be 
written in the form (4.12). 

Note that the second term in (2.9) may also turn out to be non-linear due to the choice of the 
non-linear operator Ru in (2.1). In this case the mass forces will occur non-linearly in (2.10), 
unlike Eqs (3.15). 

If the defining relations depend on the temperature T, and the Duhamel-Neumann hypo- 
thesis holds, the temperature will occur linearly in (3.9) even in the case of physical non- 
linearity. The tensor I& (1.2) will be supplemented by the term T$, which for the transversely 
isotropic case is expressed as follows: 
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q$ =2a,A”T+(2a, +a,)&T 

r& = 2a,A”T+a2iT 

Here the tensor of the thermal expansion (xii can be represented in the form 

In conclusion we note that for a transversely isotropic medium the differentiation operator 
a, can also be represented in the form 

ai = ai + liao; 9 = liai; pi = avai 

Hence we have 

A j~i 6,aia j = (aii + lilj )&a j = SiSi + (a0 j2 = Ii + A0 
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